初中数学教案(10篇)

时间:2025-12-30 15:06:00   来源:无忧考网     [字体: ]
【#教案# #初中数学教案(10篇)#】数学教案是教学过程中不可或缺的重要工具,它不仅帮助教师系统地规划和实施教学活动,还促进了教学质量的提升和师生之间的有效互动。通过教案,教师能够更好地引导学生掌握数学知识,培养学生的逻辑思维能力和解决问题的技能,为学生的数学学习打下坚实的基础。以下是®无忧考网整理的《初中数学教案(10篇)》,希望对您有所帮助。

1.  初中数学教案 篇一


教学目标

  1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。

  2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。

  3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。

  教学重点

  度、分、秒间单位互化及角的和、差、倍、分计算。

  知识难点

  度、分、秒间单位互化及角的和、差、倍、分计算。

  教学准备

  量角器、三角尺。

  教学过程

  (师生活动)设计理念

  复习

  任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的.使用,为学习角度制作准备。

  探究新知在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位。

  让学生回忆学过的描述方法,师生共同探讨解决问题的办法。

  不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。

  方位的表示通常用北偏东多少度、北偏西多少度或者南偏东多少度、南偏西多少度来表示。北偏东45度、北偏西45度、南偏东45度、南偏西45度,分别称为东北方向、西北方向,东南方向、西南方向。

2. 初中数学教案 篇二


  学习目标

  1、了解分式的概念,会判断一个代数式是否是分式。

  2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

  3、能分析出一个简单分式有、无意义的条件。

  4、会根据已知条件求分式的值。

  学习重点

  分式的概念,掌握分式有意义的条件

  学习难点

  分式有、无意义的条件

  教学流程

  预习导航

  一、创设情境:

  京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国繁忙的.铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:

  (1)货运列车从北京到上海需要多长时间?

  (2)快速列车从北京到上海需要多长时间?

  (3)已知从北京到上海快速列车比货运列车少用多少时间?

  观察刚才你们所列的式子,它们有什么特点?

  这些式子与分数有什么相同和不同之处?

  合作探究

  一、概念探究:

  1、列出下列式子:

  (1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是

  (2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是 元。

  (3)正n边形的每个内角为 度。

  (4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花 ______㎏。

  2、两个数相除可以把它们的商表示成分数的形式。如果用字母 分别表示分数的分子和分母,那么 可以表示成什么形式呢?

  3、思考:

  上面所列各式有什么共同特点?

  (通过对以上几个实际问题的研讨,学会用 的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)

  分式的概念:

  4、小结分式的概念中应注意的问题.

  ① 分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;

  ② 分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;

  ③ 如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。

  二、例题分析:

  例1 : 试解释分式 所表示的实际意义

  例2:求分式 的值 ①a=3 ②a=—

  例3:当取什么值时,分式 (1)没有意义?(2)有意义?(3)值为零。

  三、展示交流:

  1、在 ____________中,是整式的有_____________________,是分式的有________________;

  2、 写成分式为____________,且当m≠_____时分式有意义;

  3、当x_______时,分式 无意义,当x______时,分式的值为1。

  4、 若分式 的值为正数,则x的取值应是 ( )

  A. , B. C. D. 为任意实数

  四、提炼总结:

  1、什么叫分式?

  2、分式什么时候有意义?怎样求分式的值

3. 初中数学教案 篇三


  目标

  1、联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。

  2、在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。

  重点难点

  理解轴对称图形的基本特征

  教具

  准备 剪刀、纸(含平行四边形、字母N S)、教学挂图、直尺

  教学方法

  手段 观察、比较、讨论、动手操作

  教学过程

  一。新课

  1.教师取一个门框上固定门的铰连让学生观察是不是左右对称?

  2.出示教学挂图:天安门、飞机、奖杯的实物图片

  将实物图片进一步抽象为平面图形,对折以后问学生发现了什么?

  生:对折后两边能完全重合。

  师:对折后能完全重合的图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  教师先示范,让学生认识天安门城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。

  3.练习题:(出示小黑板)

  (1)P57“试一试”

  判断哪几个图形是轴对称图形?试着画出对称轴。

  估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。

  (2)用剪刀和纸剪一个轴对称图形。

  教学

  过程 二。练习

  1.出示挂图:(p58“想想做做”第1题)

  判断哪些图形是轴对称图形?

  生:竖琴图、轿车图、五角星图、铁锚图、科技标志图、中国农业银行标志图

  师:钥匙图和紫荆花图为什么不是?

  生:因为对折以后两部分没有完全重合。

  2.看书p58“想想做做”第2题

  判断哪些英文字母是轴对称图形?

  生:A、C、T、M、X(有可能有的.学生没有选C,还有可能有的学生选N、S、Z)

  师:没有选C的同学除了竖着对折,看看横着、斜着对折你有没有去试一试?认为N、S、Z是轴对称图形的我请两个学生到讲台前用表示字母N、S的纸对折一下,看看对折以后两部分有没有完全重合?

  学生试完以后会发现两部分没有完全重合。

  教师再将字母N横过来就变成了字母Z,同样道理,两部分也不会完全重合。

4. 初中数学教案 篇四


  教学目标

  1.会通过列方程解决“配套问题”;

  2.掌握列方程解决实际问题的一般步骤;

  3.通过列方程解决实际问题的过程,体会建模思想。

  教学重点

  建立模型解决实际问题的一般方法。

  教学难点

  建立模型解决实际问题的一般方法。

  学情分析

  1、 在前面已学过一元方程的解法,能够简单的'运用一元方程解决实际问题。

  2、 培养学生分析、解决问题的能力及逻辑思维能力。

  学法指导 自学互帮导学法

  教 学过程

  教学内容 教师活动 学生活动 效果预测( 可能出现的问题) 补救措施 修改意见

  一、复习与回顾

  问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?

  1. 审:审题,分析题目中的数量关系;

  2. 设:设适当的未知数,并表示未知量;

  3. 列:根据题目中的数量关系列方程;

  4. 解:解这个方程;

  5. 答:检验 并答话。

  二、应用与探究

  问题2:应用回顾的步骤解决以下问题。

  例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母。 1个螺钉 需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人 各多少名?

  三、课堂练习

  1、一套仪器由一个A部件和三个B部件构成。 用1 m3钢材可以做40个A部件或240个B部件。 现要用6 m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材 做B部件,恰好配成这种仪器多少套?

  2、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼。制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉。 现共有面粉4500kg,制作两种月饼 应各用多少面粉,才能生产多的盒装月饼?

  四、小结与归纳

  问题4:用一元方程解决实际问题的基本过程有几个步骤? 分别是什么?

  五、课后作业

  教科书第106页习题3.4 第2、3、7题;

  1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。

  2、教师展示例题,并 巡视学生独立完成情况,引导学生分析问题并解决问题。

  3、教师展示练习题,引导学生分析问题并解决问题,并巡视。

  4、教师通过提问,让学生进行归纳小结。

  1)学生回忆并独立回答。

  2)学生先观看课件,先独立思考,再合作交流解决问题 。

  3)学生先观看课件并解决问题。

  4)学生自主归纳本节课所学内容。

  不能解决问题。

  教师展示解答过程。

5. 初中数学教案 篇五


 教学目标知识目标:

  1.理解平行线分三角形两边成比例定理;

  2.进一步熟悉平行线分三角形两边成比例定理的应用;

  能力目标:

  培养学生的观察、分析、概括能力;

  德育目标:

  了解特殊与一般的辩证关系;

  教学重点定理的推导与应用

  教学难点成比例的线段中比例线段的'确认

  教具学具多媒体 三角板

  教学方法讲练结合

  过程教学内容学生活动设计意图

  一、复习提问 引入新课

  问题:

  1、三角形中位线定理的推论是什么?

  2、如何用几何语言描述?

  3、定理结论用比例尺如何表述?

  二、新课

  1、议一议

  如图DE∥BC

  (1)如果 ,那么 等于多少?为什么?

  学生定理内容,用几何语言描述定理并用比例表示

  学生进行讨论,通过教师引导,得出对应结论。为新课作铺垫

  培养学生的观察、分析能力

  (2)如果 ,是否也有 呢?为什么?

  (3)如果把条件改为 那么 是否还与 相等?为什么?

  教师进行简单说明。

  2、由此我们可以得到什么样的结论?如何描述?

  这个比例关系还可以怎么表示?为什么?

  平行线分三角形两边成比例定理:

  平行于三角形一边的直线截其他两边,所得的对应线段成比例。

  例1已知:如图,在△ABC中,DE∥BC,AD=4,DB=3,AC=10,求AE、EC的长。

  学生概括用几何语言表示:

  DE∥BC

  应用比例性质完成比例变式

  学生完成一步推理:

  DE∥BC

  学生思考,自己尝试解题

  复习比例性质,灵活运用定理

  帮助记忆、加深印象

  加深定理理解

  解题过程:略

  练习:

  选择课后习题练习

  学生练习

  灵活运用定理

  小结平行线分三角形两边成比例定理;

  注意把对应线段写在对应位置

  板书设计平行线分三角形两边成比例

  1、定理 2、例1 3、练习

  布置作业同步练习节选

  课后自评

6. 初中数学教案 篇六


 教学目标

  1.知识与技能: 了解命题、公理、定理的含义;理解证明的必要性.

  2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条 理地表达自己想法的良好意识.

  3.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.

  重点与难点

  1.重点:知道什么是公理,什么是定理

  2.难点:理解证明的必要性.

  教学过程

  一、复习引入

  教师讲解:前一节课 我们讲过,要证明一个命题是假命题,只要举 出 一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.

  二、探究新知

  (一)公理教师讲解:数学中有些命题的正确性是人们在 长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

  我们已经知道下列命题是真命题:

  一条直线截两条平行直线所得的同位角相等;

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

  全等三角形的对应边、对应角相等.

  在本书中我们将这些真命题均作为公理.

  (二)定理教师引导学生通过举反例来说明下面两题中归纳出的`结论是错误的.从而说明证明的重要性.

  1、教师讲解:请大家看下面的例子:

  当n=1时,(n2-5n+5)2=1;

  当n=2时,(n2-5n+5)2=1;

  当n=3时,(n2-5n +5)2=1.

  我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?

  实际上我们的猜 测是错误的,因为当n=5时 ,(n2-5n+5)2=25.

  2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2。由此我们猜想:当a> b时,a2>b2.这个命题是真命题吗?

  [答案:不正确,因为3>-5,但32<(-5)2]

  教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道, 这些方法得到 的结论有 时不具有一般性.也就是说,由这些方法得到的命 题可能是真命题,也可能 是假命题.

  教师讲解:数学中有些命题可以从公理出发用逻辑推理的方 法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这 样的真命题叫 做定理.

  (三)例题与证明

  例如,有了“三角形的内角和等于1 80”这 条定 理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角 三角形的两个锐角互余.

  教师板书证明过程.

  教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.

  定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.

  三、随堂练习

  课本P66练习第1、2题.

  四、课时总结

  1、在长期实践中总结出来为 真命 题的命题叫做公理.

  2、用逻辑推理的方法证明它们是正确的命题叫做定理

  五、布置作业

7. 初中数学教案 篇七


  一、教材内容

  人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

  二、教学目标

  1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

  2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

  3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

  三、教学重、难点

  认识负数的意义。

  四、教学过程

  (一)谈话交流

  谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

  (二)教学新知

  1.表示相反意义的量

  (1)引入实例

  谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

  ① 六年级上学期转来6人,本学期转走6人。

  ② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

  ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

  ④ 一个蓄水池夏季水位上升米,冬季水位下降米。

  指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

  (2)尝试

  怎样用数学方式来表示这些相反意义的量呢?

  请同学们选择一例,试着写出表示方法。

  (3)展示交流

  2.认识正、负数

  (1)引入正、负数

  谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人,这种表示方法和数学上是完全一致的。

  介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

  “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

  像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写。其实,过去我们认识的很多数都是正数。

  (2)试一试

  请你用正、负数来表示出其它几组相反意义的量。

  写完后,交流、检查。

  3.联系实际,加深认识

  (1)说一说存折上的数各表示什么?(教学例2。)

  (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

  ① 同桌交流。

  ② 全班交流。根据学生发言板书。

  这样的正、负数能写完吗?

  强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

  4.进一步认识“0”

  (1)看一看、读一读

  谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

  哈尔滨: -18 ℃~-5 ℃

  北京: -6 ℃~6 ℃

  深圳: 15 ℃~25 ℃

  温度中有正数也有负数,请把负数读出来。

  (2)找一找、说一说

  我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

  你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

  现在你能很快找出来吗?(给出温度计的'刻度数,生到前面指。)

  说一说,你怎么这么快就找到了?

  (课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃吗?

  (3)提升认识

  请学生观察温度计,说一说有什么发现?

  在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

  “0”是正数,还是负数呢?

  在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

  (4)总结归纳

  如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

  5.练一练

  读一读,填一填。

  6.出示课题

  同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

  根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

8. 初中数学教案 篇八


  一、 教材内容及设置依据

  【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

  【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

  二、教材的地位和作用

  本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

  三、对重点、难点的处理

  【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:

  1、知识巩固型

  2、实际应用型

  3、方法多变型

  4、知识拓展型等。

  【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

  四、关于教学方法的选用

  根据本节课的内容和学生的实际水平,本节课可采用的方法:

  1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

  2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

  3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

  五、关于学法的指导

  “授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

  六、课时安排:1课时

  教学程序:

  一、复习铺垫:

  首先利用多媒体出示一组有关有理数的'加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

  1、45+(-23) 2、9-(-5)

  3、-28-(-37)4、(-13 )+0

  5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

  从四排学生中个推选一名学生代表板演6、7、8、题。

  通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

  然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

  二、新知探索:

  1、 出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作

  上升4.5千米 +4.5千米

  下降3.2千米 -3.2千米

  上升1.1千米 +1.1千米

  下降1.4千米 -1.4千米

  此时飞机比起飞点高了多少米?

  让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

  ① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

  =1.3+1.1+(-1.4) =1.3+1.1-1.4

  =2.4+(-1.4) =2.4-1.4

  =1千米 =1千米

  教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。

9. 初中数学教案 篇九


 教学目标

  1.通过观察大量反复实验后获得的频率折线统计图,发现可以用稳定时的频率值来估计机会的大小。

  2.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能。

  3.培养学生互相合作的美好品德,认识通过实验、归纳可以获得数学猜想,体现数学来源于实践又反作用于实践的道理。

  教学重难点

  重点:通过实验,相信经过大量的重复实验后所得到的平稳时的频率值可以作为随机事件每次发生的可能性(即机会)的估计值。

  难点:通过实验得到随机事件发生的机会。

  教学准备

  学生:自制大小两个转盘(涂有红、蓝两种颜色) 。

  教学过程

  一、复习活动。

  1.请大家回答上节课学习的机会的定义。

  2.抛掷两枚硬币,当实验次数很大以后,出现两个正面的频率值稳定于______,出现两个反面的频率值稳定于____,出现一正一反的频率值稳定于______。

  思考:把硬币换成瓶盖,结论还是这些数吗?

  二、引导观察。

  1.导人课题。

  上节课我们做的实验是抛掷两枚相同的硬币,从而得到了可以用平稳时的频率来估计某一事件发生的.可能性(即机会) 。这一节课我们再做一个实验,来进一步研究这个问题。

  2.提出问题。

  拿出自制的转盘,统一要求如下规格:

  用力旋转如上图所示的转盘甲或转盘乙的指针,如果你想让指针停在蓝色上,那么选哪个转盘能使你成功的机会比较大?

  3.分组实验。

  以小组为单位做这个实验,同一小组内成员做的次数可以累加,将实验结果填人课本第99页表15.1.3,并在图15.1.4中用不同颜色的笔分别画出相应的两条折线。

  4.总结概括。

  从实验结果中你得到了什么结论?

  5.深入思考。

  (1)有同学说,转盘乙大,相应地,蓝色部分的面积也大,所以选转盘乙成功的机会比较大。你同意吗?

  (2)还有同学说,每个转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,成功的机会都是50%,所以随便选哪个转盘都可以。你同意吗?

  三、举例应用。

  如果不做实验,你能预言下图所示的转盘指针停在红色上的机会吗?

  四、思维拓展。

  一个袋中有3个红球,5个黄球,7个绿球。每次从袋中摸出一个球,然后放回搅匀再摸。请设计实验,画出统计表,并画出折线图。完成后回答下列问题:

  (学生四人一组合作完成。 )

  (1)摸出一个恰好为红球的频率稳定在什么值?

  (2)知道从袋中摸出一个为红球的机会是多少?

  五、课堂小结。

  这节课你有什么收获?学到了什么?还有哪些需要老师解决的问题?(要求学生自己总结。 )

  六、布置作业。

  1.园园有5张扑'克牌,从中任意抽出一张是2的机会为1,你能猜出园园的5张牌分别是什么吗?

  2.课本第101页习题15.1第2题。

10. 初中数学教案 篇十


  教学目标

  1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;

  2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

  3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

  4.会用因式分解法解某些一元二次方程。

  5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

  教学重点和难点

  重点:一元二次方程的四种解法。

  难点:选择恰当的方法解一元二次方程。

  教学建议:

  一、教材分析:

  1.知识结构:一元二次方程的解法

  2.重点、难点分析

  (1)熟练掌握开平方法解一元二次方程

  用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

  如果一元二次方程的一边是未知数的平方或含有未知数的式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

  配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上项系数一半的平方这两个关键步骤。

  (2)熟记求根公式和公式中字母的'意义在使用求根公式时要注意以下三点:

  1)把方程化为一般形式,并做到、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

  2)把一元二次方程的各项系数、代入公式时,注意它们的符号。

  3)当时,才能求出方程的两根。

  (3)抓住方程特点,选用因式分解法解一元二次方程

  如果一个一元二次方程的一边是零,另一边易于分解成两个因式时,就可以用因式分解法求解。这时只要使每个因式等于零,分别解两个一元方程,得到两个根就是一元二次方程的解。

  我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

  二、教法建议

  1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

  2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践。