小升初常见的典型题【五篇】

时间:2017-12-13 13:46:00   来源:无忧考网     [字体: ]
【#小升初# #小升初常见的典型题【五篇】#】海阔凭你跃,天高任你飞。愿你信心满满,尽展聪明才智;妙笔生花,谱下锦绣第几篇。学习的敌人是自己的知足,要使自己学一点东西,必需从不自满开始。以下是©无忧考网为大家整理的《小升初常见的典型题【五篇】》 供您查阅。

【第一篇】

一、和差问题
  已知两数的和与差,求这两个数。
  【口诀】:
  和加上差,越加越大;
  除以2,便是大的;
  和减去差,越减越小;
  除以2,便是小的。
  例:已知两数和是10,差是2,求这两个数。
  按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
  二、鸡兔同笼问题
  【口诀】:
  假设全是鸡,假设全是兔。
  多了几只脚,少了几只足?
  除以脚的差,便是鸡兔数。
  例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
  求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
  求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12

【第二篇】

三、浓度问题
  (1)加水稀释
  【口诀】:
  加水先求糖,糖完求糖水。
  糖水减糖水,便是加糖量。
  例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
  加水先求糖,原来含糖为:20X15%=3(千克)
  糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
  糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
  (2)加糖浓化
  【口诀】:
  加糖先求水,水完求糖水。
  糖水减糖水,求出便解题。
  例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
  加糖先求水,原来含水为:20X(1-15%)=17(千克)
  水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
  糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
  四、路程问题
  (1)相遇问题
  【口诀】:
  相遇那一刻,路程全走过。
  除以速度和,就把时间得。
  例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
  相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。
  除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
  (2)追及问题
  【口诀】:
  慢鸟要先飞,快的随后追。
  先走的路程,除以速度差,
  时间就求对。
  例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
  先走的路程,为3X2=6(千米)
  速度的差,为6-3=3(千米/小时)。
  所以追上的时间为:6/3=2(小时)。

【第三篇】

五、工程问题
  【口诀】:
  工程总量设为1,
  1除以时间就是工作效率。
  单独做时工作效率是自己的,
  一齐做时工作效率是众人的效率和。
  1减去已经做的便是没有做的,
  没有做的除以工作效率就是结果。
  例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
  [1-(1/6+1/4)X2]/(1/6)=1(天)
  六、盈亏问题
  【口诀】:
  全盈全亏,大的减去小的;
  一盈一亏,盈亏加在一起。
  除以分配的差,
  结果就是分配的东西或者是人。
  例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
  一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
  例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
  全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
  例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?
  全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)

【第四篇】

七、牛吃草问题
  【口诀】:
  每牛每天的吃草量假设是份数1,
  A头B天的吃草量算出是几?
  M头N天的吃草量又是几?
  大的减去小的,除以二者对应的天数的差值,
  结果就是草的生长速率。
  原有的草量依此反推。
  公式就是A头B天的吃草量减去B天乘以草的生长速率。
  将未知吃草量的牛分为两个部分:
  一小部分先吃新草,个数就是草的比率;
  有的草量除以剩余的牛数就将需要的天数求知。
  例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
  每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
  大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
  结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);
  原有的草量依此反推。
  公式就是A头B天的吃草量减去B天乘以草的生长速率。
  所以原有的草量=27X6-6X15=72(牛/天)。
  将未知吃草量的牛分为两个部分:
  一小部分先吃新草,个数就是草的比率;
  这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;
  剩下的21-15=6去吃原有的草,
  所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
  八、年龄问题
  【口诀】:
  岁差不会变,同时相加减。
  岁数一改变,倍数也改变。
  抓住这三点,一切都简单。
  例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
  岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
  已知差及倍数,转化为差比问题。
  26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
  例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
  岁差不会变,今年的岁数差13-9=4几年后也不会改变。
  几年后岁数和是40,岁数差是4,转化为和差问题。
  则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。

【第五篇】

九、和比问题
  已知整体求部分。
  【口诀】:
  家要众人合,分家有原则。
  分母比数和,分子自己的。
  和乘以比例,就是该得的。
  例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
  分母比数和,即分母为:2+3+4=9;
  分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
  和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。
  十、差比问题
  【口诀】:
  我的比你多,倍数是因果。
  分子实际差,分母倍数差。
  商是一倍的,
  乘以各自的倍数,
  两数便可求得。
  例:甲数比乙数大12,甲:乙=7:4,求两数。
  先求一倍的量,12/(7-4)=4,
  所以甲数为:4X7=28,乙数为:4X4=16。